# Octal D-type flip-flop; positive edge-trigger; 3-state

### FEATURES

- 3-state non-inverting outputs for bus oriented applications
- 8-bit positive edge-triggered register
- Common 3-state output enable input
- Independent register and 3-state buffer operation
- Output capability: bus driver
- I<sub>CC</sub> category: MSI

## GENERAL DESCRIPTION

The 74HC/HCT574 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT574 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and non-inverting 3-state outputs for bus oriented applications. A clock (CP) and an output enable  $(\overline{OE})$  input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH CP transition. When  $\overline{OE}$  is LOW, the contents of the 8 flip-flops are available at the outputs.

When  $\overline{OE}$  is HIGH, the outputs go to the high impedance OFF-state. Operation of the  $\overline{OE}$  input does not affect the state of the flip-flops.

The "574" is functionally identical to the "564", but has non-inverting outputs.

The "574" is functionally identical to the "374", but has a different pinning.

## QUICK REFERENCE DATA

GND = 0 V;  $T_{amb} = 25 \text{ °C}$ ;  $t_r = t_f = 6 \text{ ns}$ 

| SYMBOL                              | PARAMETER                                   | CONDITIONS                                    | TYP |     |     |
|-------------------------------------|---------------------------------------------|-----------------------------------------------|-----|-----|-----|
| STIVIDUL                            |                                             | CONDITIONS                                    | нс  | нст |     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay CP to Q <sub>n</sub>      | C <sub>L</sub> = 15 pF; V <sub>CC</sub> = 5 V | 14  | 15  | ns  |
| f <sub>max</sub>                    | maximum clock frequency                     |                                               | 123 | 76  | MHz |
| CI                                  | input capacitance                           |                                               | 3.5 | 3.5 | pF  |
| C <sub>PD</sub>                     | power dissipation capacitance per flip-flop | notes 1 and 2                                 | 22  | 25  | pF  |

#### Notes

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:

 $f_i$  = input frequency in MHz

 $f_o = output frequency in MHz$ 

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ 

C<sub>L</sub> = output load capacitance in pF

- V<sub>CC</sub> = supply voltage in V
- 2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5$  V

#### **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

## 74HC/HCT574

## Octal D-type flip-flop; positive edge-trigger; 3-state

## 74HC/HCT574

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver  $I_{CC}$  category: MSI

## AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                                           | T <sub>amb</sub> (°C) |                  |                 |                 |                 |                 |                 |     | TEST CONDITIONS        |           |
|-------------------------------------|-----------------------------------------------------|-----------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|------------------------|-----------|
|                                     |                                                     |                       | 74HC             |                 |                 |                 |                 |                 |     |                        |           |
|                                     |                                                     | +25                   |                  |                 | -40 to +85      |                 | -40 to +125     |                 |     | V <sub>CC</sub><br>(V) | WAVEFORMS |
|                                     |                                                     | min.                  | typ.             | max.            | min.            | max.            | min.            | max.            |     | (•)                    |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>CP to Q <sub>n</sub>           |                       | 47<br>17<br>14   | 150<br>30<br>26 |                 | 190<br>35<br>33 |                 | 225<br>45<br>38 | ns  | 2.0<br>4.5<br>6.0      | Fig.6     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable<br>time OE to Q <sub>n</sub>  |                       | 44<br>16<br>13   | 140<br>28<br>24 |                 | 175<br>35<br>30 |                 | 210<br>42<br>36 | ns  | 2.0<br>4.5<br>6.0      | Fig.7     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable<br>time OE to Q <sub>n</sub> |                       | 39<br>14<br>11   | 125<br>25<br>21 |                 | 155<br>31<br>26 |                 | 190<br>38<br>32 | ns  | 2.0<br>4.5<br>6.0      | Fig.7     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                              |                       | 14<br>5<br>4     | 60<br>12<br>10  |                 | 75<br>15<br>13  |                 | 90<br>18<br>15  | ns  | 2.0<br>4.5<br>6.0      | Fig.6     |
| t <sub>W</sub>                      | clock pulse width<br>HIGH or LOW                    | 80<br>16<br>14        | 14<br>5<br>4     |                 | 100<br>20<br>17 |                 | 120<br>24<br>20 |                 | ns  | 2.0<br>4.5<br>6.0      | Fig.6     |
| t <sub>su</sub>                     | set-up time<br>D <sub>n</sub> to CP                 | 60<br>12<br>10        | 6<br>2<br>2      |                 | 75<br>15<br>13  |                 | 90<br>18<br>15  |                 | ns  | 2.0<br>4.5<br>6.0      | Fig.8     |
| t <sub>h</sub>                      | hold time<br>D <sub>n</sub> to CP                   | 5<br>5<br>5           | 0<br>0<br>0      |                 | 5<br>5<br>5     |                 | 5<br>5<br>5     |                 | ns  | 2.0<br>4.5<br>6.0      | Fig.8     |
| f <sub>max</sub>                    | maximum clock pulse<br>frequency                    | 6.0<br>30<br>35       | 37<br>112<br>133 |                 | 4.8<br>24<br>28 |                 | 4.0<br>20<br>24 |                 | MHz | 2.0<br>4.5<br>6.0      | Fig.6     |

## Octal D-type flip-flop; positive edge-trigger; 3-state

## 74HC/HCT574

## DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver  $I_{CC}$  category: MSI

#### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT          | UNIT LOAD COEFFICIENT |
|----------------|-----------------------|
| D <sub>n</sub> | 0.5                   |
| OE             | 1.25                  |
| CP             | 1.5                   |

## AC CHARACTERISTICS FOR 74HCT

GND = 0 V;  $t_r = t_f = 6 ns$ ;  $C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                                        | T <sub>amb</sub> (°C) |      |      |            |      |             |      |      | TEST CONDITIONS        |           |
|-------------------------------------|--------------------------------------------------|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------|
|                                     |                                                  | 74HCT                 |      |      |            |      |             |      |      |                        |           |
|                                     |                                                  | +25                   |      |      | -40 to +85 |      | -40 to +125 |      | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS |
|                                     |                                                  | min.                  | typ. | max. | min.       | max. | min.        | max. |      | (-)                    |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>CP to Q <sub>n</sub>        |                       | 18   | 33   |            | 41   |             | 50   | ns   | 4.5                    | Fig.6     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time OE to Q <sub>n</sub>  |                       | 19   | 33   |            | 41   |             | 50   | ns   | 4.5                    | Fig.7     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time OE to Q <sub>n</sub> |                       | 16   | 28   |            | 35   |             | 42   | ns   | 4.5                    | Fig.7     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                           |                       | 5    | 12   |            | 15   |             | 18   | ns   | 4.5                    | Fig.6     |
| t <sub>W</sub>                      | clock pulse width<br>HIGH or LOW                 | 16                    | 7    |      | 20         |      | 24          |      | ns   | 4.5                    | Fig.6     |
| t <sub>su</sub>                     | set-up time<br>D <sub>n</sub> to CP              | 12                    | 3    |      | 15         |      | 18          |      | ns   | 4.5                    | Fig.8     |
| t <sub>h</sub>                      | hold time<br>D <sub>n</sub> to CP                | 5                     | -1   |      | 5          |      | 5           |      | ns   | 4.5                    | Fig.8     |
| f <sub>max</sub>                    | maximum clock pulse<br>frequency                 | 30                    | 69   |      | 24         |      | 20          |      | MHz  | 4.5                    | Fig.6     |